- Journal Home
- Volume 18 - 2023
- Volume 17 - 2022
- Volume 16 - 2021
- Volume 15 - 2020
- Volume 14 - 2019
- Volume 13 - 2018
- Volume 12 - 2017
- Volume 11 - 2016
- Volume 10 - 2015
- Volume 9 - 2014
- Volume 8 - 2013
- Volume 7 - 2012
- Volume 6 - 2011
- Volume 5 - 2010
- Volume 4 - 2009
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Fuzzy Random Homogeneous Poisson Process and Compound Poisson Process
Cited by
Export citation
- BibTex
- RIS
- TXT
@Article{JICS-1-207,
author = {},
title = {Fuzzy Random Homogeneous Poisson Process and Compound Poisson Process},
journal = {Journal of Information and Computing Science},
year = {2024},
volume = {1},
number = {4},
pages = {207--224},
abstract = {By dealing with interarrival times as exponentially distributed fuzzy random variables, a fuzzy
random homogeneous Poisson process and a fuzzy random compound Poisson process are respectively
defined. Several theorems on the two processes are provided, respectively.
},
issn = {1746-7659},
doi = {https://doi.org/},
url = {http://global-sci.org/intro/article_detail/jics/22832.html}
}
TY - JOUR
T1 - Fuzzy Random Homogeneous Poisson Process and Compound Poisson Process
AU -
JO - Journal of Information and Computing Science
VL - 4
SP - 207
EP - 224
PY - 2024
DA - 2024/01
SN - 1
DO - http://doi.org/
UR - https://global-sci.org/intro/article_detail/jics/22832.html
KW - Keywords Fuzzy Variables
KW - Fuzzy Random Variables
KW - Poisson Process
KW - Fuzzy Random Homogeneous Poisson
Process
KW - Fuzzy Random Compound Poisson Process
AB - By dealing with interarrival times as exponentially distributed fuzzy random variables, a fuzzy
random homogeneous Poisson process and a fuzzy random compound Poisson process are respectively
defined. Several theorems on the two processes are provided, respectively.
. (2024). Fuzzy Random Homogeneous Poisson Process and Compound Poisson Process.
Journal of Information and Computing Science. 1 (4).
207-224.
doi:
Copy to clipboard