- Journal Home
- Volume 37 - 2025
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 8 (2010), pp. 877-900.
Published online: 2010-08
Cited by
- BibTex
- RIS
- TXT
This work deals with the simulation of two-dimensional Lagrangian hydrodynamics problems. Our objective is the development of an artificial viscosity that is to be used in conjunction with a staggered placement of variables: thermodynamics variables are centered within cells and position and fluid velocity at vertices. In [J. Comput. Phys., 228 (2009), 2391-2425], Maire develops a high-order cell-centered scheme for solving the gas dynamics equations. The numerical results show the accuracy and the robustness of the method, and the fact that very few Hourglass-type deformations are present. Our objective is to establish the link between the scheme of Maire and the introduction of artificial viscosity in a Lagrangian code based on a staggered grid. Our idea is to add an extra degree of freedom to the numerical scheme, which is an approximation of the fluid velocity within cells. Doing that, we can locally come down to a cell-centered approximation and define the Riemann problem associated to discrete variable discontinuities in a very natural way. This results in a node-centered artificial viscosity formulation. Numerical experiments show the robustness and the accuracy of the method, which is very easy to implement.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.030709.161209a}, url = {http://global-sci.org/intro/article_detail/cicp/7600.html} }This work deals with the simulation of two-dimensional Lagrangian hydrodynamics problems. Our objective is the development of an artificial viscosity that is to be used in conjunction with a staggered placement of variables: thermodynamics variables are centered within cells and position and fluid velocity at vertices. In [J. Comput. Phys., 228 (2009), 2391-2425], Maire develops a high-order cell-centered scheme for solving the gas dynamics equations. The numerical results show the accuracy and the robustness of the method, and the fact that very few Hourglass-type deformations are present. Our objective is to establish the link between the scheme of Maire and the introduction of artificial viscosity in a Lagrangian code based on a staggered grid. Our idea is to add an extra degree of freedom to the numerical scheme, which is an approximation of the fluid velocity within cells. Doing that, we can locally come down to a cell-centered approximation and define the Riemann problem associated to discrete variable discontinuities in a very natural way. This results in a node-centered artificial viscosity formulation. Numerical experiments show the robustness and the accuracy of the method, which is very easy to implement.