- Journal Home
- Volume 37 - 2025
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 8 (2010), pp. 797-822.
Published online: 2010-08
Cited by
- BibTex
- RIS
- TXT
We study high-resolution central schemes in Lagrangian coordinates for the one-dimensional system of conservation laws describing the evolution of two gases in slab geometry separated by an interface. By using Lagrangian coordinates, the interface is transformed to a fixed coordinate in the computational domain and, as a consequence, the movement of the interface is obtained as a byproduct of the numerical solution. The main contribution is the derivation of a special equation of state to be imposed at the interface in order to avoid non-physical oscillations. Suitable boundary conditions at the piston that guarantee second order convergence are described. We compare the solution of the piston problem to other results available in the literature and to a reference solution obtained within the adiabatic approximation. A shock-interface interaction problem is also treated. The results on these tests are in good agreement with those obtained by other methods.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.310109.220110a}, url = {http://global-sci.org/intro/article_detail/cicp/7595.html} }We study high-resolution central schemes in Lagrangian coordinates for the one-dimensional system of conservation laws describing the evolution of two gases in slab geometry separated by an interface. By using Lagrangian coordinates, the interface is transformed to a fixed coordinate in the computational domain and, as a consequence, the movement of the interface is obtained as a byproduct of the numerical solution. The main contribution is the derivation of a special equation of state to be imposed at the interface in order to avoid non-physical oscillations. Suitable boundary conditions at the piston that guarantee second order convergence are described. We compare the solution of the piston problem to other results available in the literature and to a reference solution obtained within the adiabatic approximation. A shock-interface interaction problem is also treated. The results on these tests are in good agreement with those obtained by other methods.