- Journal Home
- Volume 38 - 2025
- Volume 37 - 2025
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 38 (2025), pp. 467-490.
Published online: 2025-08
Cited by
- BibTex
- RIS
- TXT
Designing a good preconditioner for accelerating the iterative solution of the three-dimensional multi-group radiation diffusion equations based on a cell-centered finite volume discretization has been the focus of intensive research efforts over the past few decades. In the present paper, we develop a physics-wise splitting preconditioning algorithm with selective relaxation and algebraic multigrid subsolves. The spectral distribution and the degree of the minimal polynomial of its right-preconditioned matrix together with the conditional convergence property of its iteration method are analyzed. Subsequently, we discuss its sequential implementation as well as the two-level parallelization. Lastly, the new preconditioner is applied to the experimental test cases arising from realistic simulations of the hydrodynamic instability during the deceleration phase of a laser-driven spherical implosion to illustrate the numerical robustness, computational efficiency, parallel strong and weak scalabilities, and its competitiveness with some existing monolithic and block preconditioning approaches.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.OA-2023-0147}, url = {http://global-sci.org/intro/article_detail/cicp/24304.html} }Designing a good preconditioner for accelerating the iterative solution of the three-dimensional multi-group radiation diffusion equations based on a cell-centered finite volume discretization has been the focus of intensive research efforts over the past few decades. In the present paper, we develop a physics-wise splitting preconditioning algorithm with selective relaxation and algebraic multigrid subsolves. The spectral distribution and the degree of the minimal polynomial of its right-preconditioned matrix together with the conditional convergence property of its iteration method are analyzed. Subsequently, we discuss its sequential implementation as well as the two-level parallelization. Lastly, the new preconditioner is applied to the experimental test cases arising from realistic simulations of the hydrodynamic instability during the deceleration phase of a laser-driven spherical implosion to illustrate the numerical robustness, computational efficiency, parallel strong and weak scalabilities, and its competitiveness with some existing monolithic and block preconditioning approaches.