- Journal Home
- Volume 38 - 2025
- Volume 37 - 2025
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 38 (2025), pp. 404-438.
Published online: 2025-08
Cited by
- BibTex
- RIS
- TXT
We study topology optimization governed by the incompressible Navier-Stokes equations using a phase field model. Unconditional energy stability is shown for the gradient flow in continuous space. The novel generalized stabilized semi-implicit schemes for the gradient flow in first-order time discretization of Allen-Cahn and Cahn-Hilliard types are proposed to solve the resulting optimal control problem. With the Lipschitz continuity for state and adjoint variables, the energy stability for time and full discretization has been proved rigorously on the condition that the stabilized parameters are larger than specific values. The proposed gradient flow scheme can work with large time steps and exhibits a constant coefficient system in full discretization, which can be solved efficiently. Numerical examples in 2d and 3d show the effectiveness and robustness of the optimization algorithms proposed.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.OA-2024-0290}, url = {http://global-sci.org/intro/article_detail/cicp/24303.html} }We study topology optimization governed by the incompressible Navier-Stokes equations using a phase field model. Unconditional energy stability is shown for the gradient flow in continuous space. The novel generalized stabilized semi-implicit schemes for the gradient flow in first-order time discretization of Allen-Cahn and Cahn-Hilliard types are proposed to solve the resulting optimal control problem. With the Lipschitz continuity for state and adjoint variables, the energy stability for time and full discretization has been proved rigorously on the condition that the stabilized parameters are larger than specific values. The proposed gradient flow scheme can work with large time steps and exhibits a constant coefficient system in full discretization, which can be solved efficiently. Numerical examples in 2d and 3d show the effectiveness and robustness of the optimization algorithms proposed.