- Journal Home
- Volume 38 - 2025
- Volume 37 - 2025
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 37 (2025), pp. 1120-1156.
Published online: 2025-04
Cited by
- BibTex
- RIS
- TXT
Combining robustness and high accuracy is one of the primary challenges in the magnetohydrodynamics (MHD) field of numerical methods. This paper investigates two critical physical constraints: wave order and positivity-preserving (PP) properties of the high-resolution HLLD Riemann solver, which ensures the positivity of density, pressure, and internal energy. This method’s distinctiveness lies in its ability to ensure that the wave characteristic speeds of the HLLD Riemann solver are strictly ordered. A provably PP HLLD Riemann solver based on the Lagrangian setting is established, which can be viewed as an extension of the PP Lagrangian method in hydrodynamics but with more and stronger constraint condition. In addition, the above two properties are ensured on moving grid method by employing the Lagrange-to-Euler transform. Meanwhile, a novel multi-moment constrained finite volume method is introduced to acquire third order accuracy, and practical limiters are applied to avoid numerical oscillations. Selected numerical benchmarks demonstrate the robustness and accuracy of our methods.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.OA-2024-0068}, url = {http://global-sci.org/intro/article_detail/cicp/24033.html} }Combining robustness and high accuracy is one of the primary challenges in the magnetohydrodynamics (MHD) field of numerical methods. This paper investigates two critical physical constraints: wave order and positivity-preserving (PP) properties of the high-resolution HLLD Riemann solver, which ensures the positivity of density, pressure, and internal energy. This method’s distinctiveness lies in its ability to ensure that the wave characteristic speeds of the HLLD Riemann solver are strictly ordered. A provably PP HLLD Riemann solver based on the Lagrangian setting is established, which can be viewed as an extension of the PP Lagrangian method in hydrodynamics but with more and stronger constraint condition. In addition, the above two properties are ensured on moving grid method by employing the Lagrange-to-Euler transform. Meanwhile, a novel multi-moment constrained finite volume method is introduced to acquire third order accuracy, and practical limiters are applied to avoid numerical oscillations. Selected numerical benchmarks demonstrate the robustness and accuracy of our methods.