- Journal Home
- Volume 37 - 2025
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 35 (2024), pp. 662-692.
Published online: 2024-04
Cited by
- BibTex
- RIS
- TXT
The high-order gas-kinetic scheme (HGKS) features good robustness, high efficiency and satisfactory accuracy,the performance of which can be further improved combined with WENO-AO (WENO with adaptive order) scheme for reconstruction. To reduce computational costs in the reconstruction procedure, this paper proposes to combine HGKS with a hybrid WENO-AO scheme. The hybrid WENO-AO scheme reconstructs target variables using upwind linear approximation directly if all extreme points of the reconstruction polynomials for these variables are outside the large stencil. Otherwise, the WENO-AO scheme is used. Unlike combining the hybrid WENO scheme with traditional Riemann solvers, the troubled cell indicator of the hybrid WENO-AO method is fully utilized in the spatial reconstruction process of HGKS. During normal and tangential reconstruction, the gas-kinetic scheme flux not only needs to reconstruct the conservative variables on the left and right interfaces but also to reconstruct the derivative terms of the conservative variables. By reducing the number of times that the WENO-AO scheme is used, the calculation cost is reduced. The high-order gas-kinetic scheme with the hybrid WENO-AO method retains original robustness and accuracy of the WENO5-AO GKS, while exhibits higher computational efficiency.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.OA-2023-0108}, url = {http://global-sci.org/intro/article_detail/cicp/23056.html} }The high-order gas-kinetic scheme (HGKS) features good robustness, high efficiency and satisfactory accuracy,the performance of which can be further improved combined with WENO-AO (WENO with adaptive order) scheme for reconstruction. To reduce computational costs in the reconstruction procedure, this paper proposes to combine HGKS with a hybrid WENO-AO scheme. The hybrid WENO-AO scheme reconstructs target variables using upwind linear approximation directly if all extreme points of the reconstruction polynomials for these variables are outside the large stencil. Otherwise, the WENO-AO scheme is used. Unlike combining the hybrid WENO scheme with traditional Riemann solvers, the troubled cell indicator of the hybrid WENO-AO method is fully utilized in the spatial reconstruction process of HGKS. During normal and tangential reconstruction, the gas-kinetic scheme flux not only needs to reconstruct the conservative variables on the left and right interfaces but also to reconstruct the derivative terms of the conservative variables. By reducing the number of times that the WENO-AO scheme is used, the calculation cost is reduced. The high-order gas-kinetic scheme with the hybrid WENO-AO method retains original robustness and accuracy of the WENO5-AO GKS, while exhibits higher computational efficiency.