- Journal Home
- Volume 37 - 2025
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 35 (2024), pp. 633-661.
Published online: 2024-04
Cited by
- BibTex
- RIS
- TXT
A second order accurate in time, finite difference numerical scheme is proposed and analyzed for the Cahn-Hilliard-Navier-Stokes system, with logarithmic Flory-Huggins energy potential. In the numerical approximation to the chemical potential, a modified Crank-Nicolson approximation is applied to the singular logarithmic nonlinear term, while the expansive term is updated by an explicit second order Adams-Bashforth extrapolation, and an alternate temporal stencil is used for the surface diffusion term. Moreover, a nonlinear artificial regularization term is included in the chemical potential approximation, which ensures the positivity-preserving property for the logarithmic arguments, i.e., the numerical value of the phase variable is always between −1 and 1 at a point-wise level. Meanwhile, the convective term in the phase field evolutionary equation is updated in a semi-implicit way, with second order accurate temporal approximation. The fluid momentum equation is also computed by a semi-implicit algorithm. The unique solvability and the positivity-preserving property of the second order scheme is proved, accomplished by an iteration process. A modified total energy stability of the second order scheme is also derived. Some numerical results are presented to demonstrate the accuracy and the robust performance of the proposed second order scheme.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.OA-2023-0038}, url = {http://global-sci.org/intro/article_detail/cicp/23055.html} }A second order accurate in time, finite difference numerical scheme is proposed and analyzed for the Cahn-Hilliard-Navier-Stokes system, with logarithmic Flory-Huggins energy potential. In the numerical approximation to the chemical potential, a modified Crank-Nicolson approximation is applied to the singular logarithmic nonlinear term, while the expansive term is updated by an explicit second order Adams-Bashforth extrapolation, and an alternate temporal stencil is used for the surface diffusion term. Moreover, a nonlinear artificial regularization term is included in the chemical potential approximation, which ensures the positivity-preserving property for the logarithmic arguments, i.e., the numerical value of the phase variable is always between −1 and 1 at a point-wise level. Meanwhile, the convective term in the phase field evolutionary equation is updated in a semi-implicit way, with second order accurate temporal approximation. The fluid momentum equation is also computed by a semi-implicit algorithm. The unique solvability and the positivity-preserving property of the second order scheme is proved, accomplished by an iteration process. A modified total energy stability of the second order scheme is also derived. Some numerical results are presented to demonstrate the accuracy and the robust performance of the proposed second order scheme.