- Journal Home
- Volume 37 - 2025
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 33 (2023), pp. 849-883.
Published online: 2023-04
Cited by
- BibTex
- RIS
- TXT
For compressible reactive flows with stiff source terms, a new block-based adaptive multi-resolution method coupled with the adaptive multi-resolution representation model for ZND detonation and a conservative front capturing method based on a level-set technique is presented. When simulating stiff reactive flows, underresolution in space and time can lead to incorrect propagation speeds of discontinuities, and numerical dissipation makes it impossible for traditional shock-capturing methods to locate the detonation front. To solve these challenges, the proposed method leverages an adaptive multi-resolution representation model to separate the scales of the reaction from those of fluid dynamics, achieving both high-resolution solutions and high efficiency. A level set technique is used to capture the detonation front sharply and reduce errors due to the inaccurate prediction of detonation speed. In order to ensure conservation, a conservative modified finite volume scheme is implemented, and the front transition fluxes are calculated by considering a Riemann problem. A series of numerical examples of stiff detonation simulations are performed to illustrate that the present method can acquire the correct propagation speed and accurately capture the sharp detonation front. Comparative numerical results also validate the approach’s benefits and excellent performance.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.OA-2022-0122}, url = {http://global-sci.org/intro/article_detail/cicp/21662.html} }For compressible reactive flows with stiff source terms, a new block-based adaptive multi-resolution method coupled with the adaptive multi-resolution representation model for ZND detonation and a conservative front capturing method based on a level-set technique is presented. When simulating stiff reactive flows, underresolution in space and time can lead to incorrect propagation speeds of discontinuities, and numerical dissipation makes it impossible for traditional shock-capturing methods to locate the detonation front. To solve these challenges, the proposed method leverages an adaptive multi-resolution representation model to separate the scales of the reaction from those of fluid dynamics, achieving both high-resolution solutions and high efficiency. A level set technique is used to capture the detonation front sharply and reduce errors due to the inaccurate prediction of detonation speed. In order to ensure conservation, a conservative modified finite volume scheme is implemented, and the front transition fluxes are calculated by considering a Riemann problem. A series of numerical examples of stiff detonation simulations are performed to illustrate that the present method can acquire the correct propagation speed and accurately capture the sharp detonation front. Comparative numerical results also validate the approach’s benefits and excellent performance.