- Journal Home
- Volume 37 - 2025
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 28 (2020), pp. 372-400.
Published online: 2020-05
Cited by
- BibTex
- RIS
- TXT
Numerically solving 3D seismic wave equations is a key requirement for forward modeling and inversion. Here, we propose a weighted Runge-Kutta discontinuous Galerkin (WRKDG) method for 3D acoustic and elastic wave-field modeling. For this method, the second-order seismic wave equations in 3D heterogeneous anisotropic media are transformed into a first-order hyperbolic system, and then we use a discontinuous Galerkin (DG) solver based on numerical-flux formulations for spatial discretization. The time discretization is based on an implicit diagonal Runge-Kutta (RK) method and an explicit iterative technique, which avoids solving a large-scale system of linear equations. In the iterative process, we introduce a weighting factor. We investigate the numerical stability criteria of the 3D method in detail for linear and quadratic spatial basis functions. We also present a 3D analysis of numerical dispersion for the full discrete approximation of acoustic equation, which demonstrates that the WRKDG method can efficiently suppress numerical dispersion on coarse grids. Numerical results for several different 3D models including homogeneous and heterogeneous media with isotropic and anisotropic cases show that the 3D WRKDG method can effectively suppress numerical dispersion and provide accurate wave-field information on coarse mesh.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.OA-2018-0072}, url = {http://global-sci.org/intro/article_detail/cicp/16844.html} }Numerically solving 3D seismic wave equations is a key requirement for forward modeling and inversion. Here, we propose a weighted Runge-Kutta discontinuous Galerkin (WRKDG) method for 3D acoustic and elastic wave-field modeling. For this method, the second-order seismic wave equations in 3D heterogeneous anisotropic media are transformed into a first-order hyperbolic system, and then we use a discontinuous Galerkin (DG) solver based on numerical-flux formulations for spatial discretization. The time discretization is based on an implicit diagonal Runge-Kutta (RK) method and an explicit iterative technique, which avoids solving a large-scale system of linear equations. In the iterative process, we introduce a weighting factor. We investigate the numerical stability criteria of the 3D method in detail for linear and quadratic spatial basis functions. We also present a 3D analysis of numerical dispersion for the full discrete approximation of acoustic equation, which demonstrates that the WRKDG method can efficiently suppress numerical dispersion on coarse grids. Numerical results for several different 3D models including homogeneous and heterogeneous media with isotropic and anisotropic cases show that the 3D WRKDG method can effectively suppress numerical dispersion and provide accurate wave-field information on coarse mesh.