- Journal Home
- Volume 37 - 2025
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 24 (2018), pp. 1556-1578.
Published online: 2018-06
[An open-access article; the PDF is free to any online user.]
Cited by
- BibTex
- RIS
- TXT
This paper deals with the approximation of advection-diffusion-reaction equation solution by reduced order methods. We use the Recursive POD approximation for multivariate functions introduced in [5] and applied to the low tensor representation of the solution of the reaction-diffusion partial differential equation. In this contribution we extend the Recursive POD approximation for multivariate functions with an arbitrary number of parameters, for which we prove general error estimates. The method is used to approximate the solutions of the advection-diffusion-reaction equation. We prove spectral error estimates, in which the spectral convergence rate depends only on the diffusion interval, while the error estimates are affected by a factor that grows exponentially with the advection velocity, and are independent of the reaction rate if this lives in a bounded set. These error estimates are based upon the analyticity of the solution of these equations as a function of the parameters (advection velocity, diffusion, reaction rate). We present several numerical tests, strongly consistent with the theoretical error estimates.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.OA-2017-0257}, url = {http://global-sci.org/intro/article_detail/cicp/12489.html} }This paper deals with the approximation of advection-diffusion-reaction equation solution by reduced order methods. We use the Recursive POD approximation for multivariate functions introduced in [5] and applied to the low tensor representation of the solution of the reaction-diffusion partial differential equation. In this contribution we extend the Recursive POD approximation for multivariate functions with an arbitrary number of parameters, for which we prove general error estimates. The method is used to approximate the solutions of the advection-diffusion-reaction equation. We prove spectral error estimates, in which the spectral convergence rate depends only on the diffusion interval, while the error estimates are affected by a factor that grows exponentially with the advection velocity, and are independent of the reaction rate if this lives in a bounded set. These error estimates are based upon the analyticity of the solution of these equations as a function of the parameters (advection velocity, diffusion, reaction rate). We present several numerical tests, strongly consistent with the theoretical error estimates.