- Journal Home
- Volume 37 - 2025
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 19 (2016), pp. 904-926.
Published online: 2018-04
Cited by
- BibTex
- RIS
- TXT
This paper introduces a two-stage model for multi-channel image segmentation, which is motivated by minimal surface theory. Indeed, in the first stage, we acquire a smooth solution u from a convex variational model related to minimal surface property and different data fidelity terms are considered. This minimization problem is solved efficiently by the classical primal-dual approach. In the second stage, we adopt thresholding to segment the smoothed image u. Here, instead of using K-means to determine the thresholds, we propose a more stable hill-climbing procedure to locate the peaks on the 3D histogram of u as thresholds, in the meantime, this algorithm can also detect the number of segments. Finally, numerical results demonstrate that the proposed method is very robust against noise and superior to other image segmentation approaches.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.260115.200715a}, url = {http://global-sci.org/intro/article_detail/cicp/11113.html} }This paper introduces a two-stage model for multi-channel image segmentation, which is motivated by minimal surface theory. Indeed, in the first stage, we acquire a smooth solution u from a convex variational model related to minimal surface property and different data fidelity terms are considered. This minimization problem is solved efficiently by the classical primal-dual approach. In the second stage, we adopt thresholding to segment the smoothed image u. Here, instead of using K-means to determine the thresholds, we propose a more stable hill-climbing procedure to locate the peaks on the 3D histogram of u as thresholds, in the meantime, this algorithm can also detect the number of segments. Finally, numerical results demonstrate that the proposed method is very robust against noise and superior to other image segmentation approaches.