- Journal Home
- Volume 37 - 2025
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 23 (2018), pp. 540-560.
Published online: 2018-02
Cited by
- BibTex
- RIS
- TXT
Inspired by [Q. Y. Hu, S. Shu and J. X. Wang, Math. Comput., 79 (272) (2010): 2059-2078], we firstly present two nonoverlapping domain decomposition (DD) preconditioners $B^a_h$ and $B^{sm}_h$ about the preserving-symmetry finite volume element (SFVE) scheme for solving two-dimensional three-temperature radiation diffusion equations with strongly discontinuous coefficients. It's worth mentioning that both $B^a_h$ and $B^{sm}_h$ involve a SFVE sub-system with respect to a simple coarse space and SFVE sub-systems which are self-similar to the original SFVE system but embarrassingly parallel. Next, the nearly optimal estimation $\mathcal{O}$((1+log$\frac{d}{h}$)3) on condition numbers is proved for the resulting preconditioned systems, where d and h respectively denote the maximum diameters in coarse and fine grids. Moreover, we present algebraic and parallel implementations of $B^a_h$ and $B^{sm}_h$, develop parallel PCG solvers, and provide the numerical results validating the aforementioned theoretical estimations and stating the good algorithmic and parallel scalabilities.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.OA-2017-0065}, url = {http://global-sci.org/intro/article_detail/cicp/10537.html} }Inspired by [Q. Y. Hu, S. Shu and J. X. Wang, Math. Comput., 79 (272) (2010): 2059-2078], we firstly present two nonoverlapping domain decomposition (DD) preconditioners $B^a_h$ and $B^{sm}_h$ about the preserving-symmetry finite volume element (SFVE) scheme for solving two-dimensional three-temperature radiation diffusion equations with strongly discontinuous coefficients. It's worth mentioning that both $B^a_h$ and $B^{sm}_h$ involve a SFVE sub-system with respect to a simple coarse space and SFVE sub-systems which are self-similar to the original SFVE system but embarrassingly parallel. Next, the nearly optimal estimation $\mathcal{O}$((1+log$\frac{d}{h}$)3) on condition numbers is proved for the resulting preconditioned systems, where d and h respectively denote the maximum diameters in coarse and fine grids. Moreover, we present algebraic and parallel implementations of $B^a_h$ and $B^{sm}_h$, develop parallel PCG solvers, and provide the numerical results validating the aforementioned theoretical estimations and stating the good algorithmic and parallel scalabilities.