arrow
Volume 41, Issue 3
A Rigidity Result for the Schiffer Conjecture on Domain with a Hole

Yingxin Sun

Anal. Theory Appl., 41 (2025), pp. 229-237.

Published online: 2025-09

Export citation
  • Abstract

Let $\Omega$ be a domain with a hole containing the origin in $\mathbb{R}^2$ and $u$ be a solution to the problem 

2.png

where $\partial^{\pm}\Omega$ represents the outer and inner boundaries of $\Omega,$ respectively, $c$ is a constant. Let ${\mu}_k$ denote the $k{\rm th}$ Neumann eigenvalue of the Laplacian on $\Omega$ and${\Omega}_h$ is the hole. We establish that if $\mu< {\mu}_8,$ then $\Omega$ is an annulus.

  • AMS Subject Headings

35J25, 35N05

  • Copyright

COPYRIGHT: © Global Science Press

  • Email address
  • BibTex
  • RIS
  • TXT
@Article{ATA-41-229, author = {Sun , Yingxin}, title = {A Rigidity Result for the Schiffer Conjecture on Domain with a Hole}, journal = {Analysis in Theory and Applications}, year = {2025}, volume = {41}, number = {3}, pages = {229--237}, abstract = {

Let $\Omega$ be a domain with a hole containing the origin in $\mathbb{R}^2$ and $u$ be a solution to the problem 

2.png

where $\partial^{\pm}\Omega$ represents the outer and inner boundaries of $\Omega,$ respectively, $c$ is a constant. Let ${\mu}_k$ denote the $k{\rm th}$ Neumann eigenvalue of the Laplacian on $\Omega$ and${\Omega}_h$ is the hole. We establish that if $\mu< {\mu}_8,$ then $\Omega$ is an annulus.

}, issn = {1573-8175}, doi = {https://doi.org/10.4208/ata.OA-2024-0023}, url = {http://global-sci.org/intro/article_detail/ata/24484.html} }
TY - JOUR T1 - A Rigidity Result for the Schiffer Conjecture on Domain with a Hole AU - Sun , Yingxin JO - Analysis in Theory and Applications VL - 3 SP - 229 EP - 237 PY - 2025 DA - 2025/09 SN - 41 DO - http://doi.org/10.4208/ata.OA-2024-0023 UR - https://global-sci.org/intro/article_detail/ata/24484.html KW - Schiffer conjecture, overdetermined problem, symmetry. AB -

Let $\Omega$ be a domain with a hole containing the origin in $\mathbb{R}^2$ and $u$ be a solution to the problem 

2.png

where $\partial^{\pm}\Omega$ represents the outer and inner boundaries of $\Omega,$ respectively, $c$ is a constant. Let ${\mu}_k$ denote the $k{\rm th}$ Neumann eigenvalue of the Laplacian on $\Omega$ and${\Omega}_h$ is the hole. We establish that if $\mu< {\mu}_8,$ then $\Omega$ is an annulus.

Sun , Yingxin. (2025). A Rigidity Result for the Schiffer Conjecture on Domain with a Hole. Analysis in Theory and Applications. 41 (3). 229-237. doi:10.4208/ata.OA-2024-0023
Copy to clipboard
The citation has been copied to your clipboard