TY - JOUR T1 - A Rigidity Result for the Schiffer Conjecture on Domain with a Hole AU - Sun , Yingxin JO - Analysis in Theory and Applications VL - 3 SP - 229 EP - 237 PY - 2025 DA - 2025/09 SN - 41 DO - http://doi.org/10.4208/ata.OA-2024-0023 UR - https://global-sci.org/intro/article_detail/ata/24484.html KW - Schiffer conjecture, overdetermined problem, symmetry. AB -

Let $\Omega$ be a domain with a hole containing the origin in $\mathbb{R}^2$ and $u$ be a solution to the problem 

2.png

where $\partial^{\pm}\Omega$ represents the outer and inner boundaries of $\Omega,$ respectively, $c$ is a constant. Let ${\mu}_k$ denote the $k{\rm th}$ Neumann eigenvalue of the Laplacian on $\Omega$ and${\Omega}_h$ is the hole. We establish that if $\mu< {\mu}_8,$ then $\Omega$ is an annulus.