- Journal Home
- Volume 18 - 2025
- Volume 17 - 2024
- Volume 16 - 2023
- Volume 15 - 2022
- Volume 14 - 2021
- Volume 13 - 2020
- Volume 12 - 2019
- Volume 11 - 2018
- Volume 10 - 2017
- Volume 9 - 2016
- Volume 8 - 2015
- Volume 7 - 2014
- Volume 6 - 2013
- Volume 5 - 2012
- Volume 4 - 2011
- Volume 3 - 2010
- Volume 2 - 2009
- Volume 1 - 2008
Numer. Math. Theor. Meth. Appl., 5 (2012), pp. 99-109.
Published online: 2012-05
[An open-access article; the PDF is free to any online user.]
Cited by
- BibTex
- RIS
- TXT
An elliptic optimal control problem with constraints on the state variable is considered. The Lavrentiev-type regularization is used to treat the constraints on the state variable. To solve the problem numerically, the multigrid for optimization (MGOPT) technique and the collective smoothing multigrid (CSMG) are implemented. Numerical results are reported to illustrate and compare the efficiency of both multigrid strategies.
}, issn = {2079-7338}, doi = {https://doi.org/10.4208/nmtma.2011.m12si06}, url = {http://global-sci.org/intro/article_detail/nmtma/5930.html} }An elliptic optimal control problem with constraints on the state variable is considered. The Lavrentiev-type regularization is used to treat the constraints on the state variable. To solve the problem numerically, the multigrid for optimization (MGOPT) technique and the collective smoothing multigrid (CSMG) are implemented. Numerical results are reported to illustrate and compare the efficiency of both multigrid strategies.