- Journal Home
- Volume 18 - 2025
- Volume 17 - 2024
- Volume 16 - 2023
- Volume 15 - 2022
- Volume 14 - 2021
- Volume 13 - 2020
- Volume 12 - 2019
- Volume 11 - 2018
- Volume 10 - 2017
- Volume 9 - 2016
- Volume 8 - 2015
- Volume 7 - 2014
- Volume 6 - 2013
- Volume 5 - 2012
- Volume 4 - 2011
- Volume 3 - 2010
- Volume 2 - 2009
- Volume 1 - 2008
Numer. Math. Theor. Meth. Appl., 5 (2012), pp. 85-98.
Published online: 2012-05
[An open-access article; the PDF is free to any online user.]
Cited by
- BibTex
- RIS
- TXT
We present an algebraic version of an iterative multigrid method for obstacle problems, called projected algebraic multigrid (PAMG) here. We show that classical algebraic multigrid algorithms can easily be extended to deal with this kind of problem. This paves the way for efficient multigrid solution of obstacle problems with partial differential equations arising, for example, in financial engineering.
}, issn = {2079-7338}, doi = {https://doi.org/10.4208/nmtma.2011.m12si05}, url = {http://global-sci.org/intro/article_detail/nmtma/5929.html} }We present an algebraic version of an iterative multigrid method for obstacle problems, called projected algebraic multigrid (PAMG) here. We show that classical algebraic multigrid algorithms can easily be extended to deal with this kind of problem. This paves the way for efficient multigrid solution of obstacle problems with partial differential equations arising, for example, in financial engineering.