- Journal Home
- Volume 18 - 2025
- Volume 17 - 2024
- Volume 16 - 2023
- Volume 15 - 2022
- Volume 14 - 2021
- Volume 13 - 2020
- Volume 12 - 2019
- Volume 11 - 2018
- Volume 10 - 2017
- Volume 9 - 2016
- Volume 8 - 2015
- Volume 7 - 2014
- Volume 6 - 2013
- Volume 5 - 2012
- Volume 4 - 2011
- Volume 3 - 2010
- Volume 2 - 2009
- Volume 1 - 2008
Numer. Math. Theor. Meth. Appl., 17 (2024), pp. 697-726.
Published online: 2024-08
Cited by
- BibTex
- RIS
- TXT
In this paper, we investigate the numerical solution of the two-dimensional fractional Laplacian wave equations. After splitting out the Riesz fractional derivatives from the fractional Laplacian, we treat the Riesz fractional derivatives with an implicit scheme while solving the rest part explicitly. Thanks to the tensor structure of the Riesz fractional derivatives, a splitting alternative direction implicit (S-ADI) scheme is proposed by incorporating an ADI remainder. Then the Gohberg-Semencul formula, combined with fast Fourier transform, is proposed to solve the derived Toeplitz linear systems at each time integration. Theoretically, we demonstrate that the S-ADI scheme is unconditionally stable and possesses second-order accuracy. Finally, numerical experiments are performed to demonstrate the accuracy and efficiency of the S-ADI scheme.
}, issn = {2079-7338}, doi = {https://doi.org/10.4208/nmtma.OA-2023-0149}, url = {http://global-sci.org/intro/article_detail/nmtma/23371.html} }In this paper, we investigate the numerical solution of the two-dimensional fractional Laplacian wave equations. After splitting out the Riesz fractional derivatives from the fractional Laplacian, we treat the Riesz fractional derivatives with an implicit scheme while solving the rest part explicitly. Thanks to the tensor structure of the Riesz fractional derivatives, a splitting alternative direction implicit (S-ADI) scheme is proposed by incorporating an ADI remainder. Then the Gohberg-Semencul formula, combined with fast Fourier transform, is proposed to solve the derived Toeplitz linear systems at each time integration. Theoretically, we demonstrate that the S-ADI scheme is unconditionally stable and possesses second-order accuracy. Finally, numerical experiments are performed to demonstrate the accuracy and efficiency of the S-ADI scheme.