- Journal Home
- Volume 18 - 2025
- Volume 17 - 2024
- Volume 16 - 2023
- Volume 15 - 2022
- Volume 14 - 2021
- Volume 13 - 2020
- Volume 12 - 2019
- Volume 11 - 2018
- Volume 10 - 2017
- Volume 9 - 2016
- Volume 8 - 2015
- Volume 7 - 2014
- Volume 6 - 2013
- Volume 5 - 2012
- Volume 4 - 2011
- Volume 3 - 2010
- Volume 2 - 2009
- Volume 1 - 2008
Numer. Math. Theor. Meth. Appl., 16 (2023), pp. 348-369.
Published online: 2023-04
Cited by
- BibTex
- RIS
- TXT
A linearized transformed $L1$ Galerkin finite element method (FEM) is presented for numerically solving the multi-dimensional time fractional Schrödinger equations. Unconditionally optimal error estimates of the fully-discrete scheme are proved. Such error estimates are obtained by combining a new discrete fractional Grönwall inequality, the corresponding Sobolev embedding theorems and some inverse inequalities. While the previous unconditional convergence results are usually obtained by using the temporal-spatial error spitting approaches. Numerical examples are presented to confirm the theoretical results.
}, issn = {2079-7338}, doi = {https://doi.org/10.4208/nmtma.OA-2022-0087}, url = {http://global-sci.org/intro/article_detail/nmtma/21580.html} }A linearized transformed $L1$ Galerkin finite element method (FEM) is presented for numerically solving the multi-dimensional time fractional Schrödinger equations. Unconditionally optimal error estimates of the fully-discrete scheme are proved. Such error estimates are obtained by combining a new discrete fractional Grönwall inequality, the corresponding Sobolev embedding theorems and some inverse inequalities. While the previous unconditional convergence results are usually obtained by using the temporal-spatial error spitting approaches. Numerical examples are presented to confirm the theoretical results.