- Journal Home
- Volume 18 - 2025
- Volume 17 - 2024
- Volume 16 - 2023
- Volume 15 - 2022
- Volume 14 - 2021
- Volume 13 - 2020
- Volume 12 - 2019
- Volume 11 - 2018
- Volume 10 - 2017
- Volume 9 - 2016
- Volume 8 - 2015
- Volume 7 - 2014
- Volume 6 - 2013
- Volume 5 - 2012
- Volume 4 - 2011
- Volume 3 - 2010
- Volume 2 - 2009
- Volume 1 - 2008
Numer. Math. Theor. Meth. Appl., 15 (2022), pp. 1193-1218.
Published online: 2022-10
Cited by
- BibTex
- RIS
- TXT
We consider numerical approximation of spectral fractional Laplace-Beltrami problems on closed surfaces. The proposed numerical algorithms rely on their Balakrishnan integral representation and consists a sinc quadrature coupled with standard finite element methods for parametric surfaces. Possibly up to a log term, optimal rate of convergence are observed and derived analytically when the discrepancies between the exact solution and its numerical approximations are measured in $L^2$ and $H^1.$ The performances of the algorithms are illustrated on different settings including the approximation of Gaussian fields on surfaces.
}, issn = {2079-7338}, doi = {https://doi.org/10.4208/nmtma.OA-2022-0005s}, url = {http://global-sci.org/intro/article_detail/nmtma/21099.html} }We consider numerical approximation of spectral fractional Laplace-Beltrami problems on closed surfaces. The proposed numerical algorithms rely on their Balakrishnan integral representation and consists a sinc quadrature coupled with standard finite element methods for parametric surfaces. Possibly up to a log term, optimal rate of convergence are observed and derived analytically when the discrepancies between the exact solution and its numerical approximations are measured in $L^2$ and $H^1.$ The performances of the algorithms are illustrated on different settings including the approximation of Gaussian fields on surfaces.