- Journal Home
- Volume 18 - 2025
- Volume 17 - 2024
- Volume 16 - 2023
- Volume 15 - 2022
- Volume 14 - 2021
- Volume 13 - 2020
- Volume 12 - 2019
- Volume 11 - 2018
- Volume 10 - 2017
- Volume 9 - 2016
- Volume 8 - 2015
- Volume 7 - 2014
- Volume 6 - 2013
- Volume 5 - 2012
- Volume 4 - 2011
- Volume 3 - 2010
- Volume 2 - 2009
- Volume 1 - 2008
Numer. Math. Theor. Meth. Appl., 15 (2022), pp. 662-678.
Published online: 2022-07
Cited by
- BibTex
- RIS
- TXT
This paper develops a posteriori error bound for a space-time finite element method for the linear wave equation. The standard $P_l$ conforming element is used for the spatial discretization and a $P_2$-CDG method is applied for the time discretization. The essential ingredients in the a posteriori error analysis are the twice time reconstruction functions and the $C^1(J)$-smooth elliptic reconstruction, which lead to reliable a posteriori error bound in view of the energy method. As an outcome, a time adaptive algorithm is proposed with the error equidistribution strategy. Numerical experiments are reported to illustrate the performance of the a posteriori error bound and the validity of the adaptive algorithm.
}, issn = {2079-7338}, doi = {https://doi.org/10.4208/nmtma.OA-2022-0012}, url = {http://global-sci.org/intro/article_detail/nmtma/20811.html} }This paper develops a posteriori error bound for a space-time finite element method for the linear wave equation. The standard $P_l$ conforming element is used for the spatial discretization and a $P_2$-CDG method is applied for the time discretization. The essential ingredients in the a posteriori error analysis are the twice time reconstruction functions and the $C^1(J)$-smooth elliptic reconstruction, which lead to reliable a posteriori error bound in view of the energy method. As an outcome, a time adaptive algorithm is proposed with the error equidistribution strategy. Numerical experiments are reported to illustrate the performance of the a posteriori error bound and the validity of the adaptive algorithm.