- Journal Home
- Volume 18 - 2025
- Volume 17 - 2024
- Volume 16 - 2023
- Volume 15 - 2022
- Volume 14 - 2021
- Volume 13 - 2020
- Volume 12 - 2019
- Volume 11 - 2018
- Volume 10 - 2017
- Volume 9 - 2016
- Volume 8 - 2015
- Volume 7 - 2014
- Volume 6 - 2013
- Volume 5 - 2012
- Volume 4 - 2011
- Volume 3 - 2010
- Volume 2 - 2009
- Volume 1 - 2008
Numer. Math. Theor. Meth. Appl., 14 (2021), pp. 242-260.
Published online: 2020-10
Cited by
- BibTex
- RIS
- TXT
We investigate the effect of cut-off logistic source on evolutionary dynamics of a generalized Cahn-Hilliard (CH) equation in this paper. It is a well-known fact that the maximum principle does not hold for the CH equation. Therefore, a generalized CH equation with logistic source may cause the negative concentration blow-up problem in finite time. To overcome this drawback, we propose the cut-off logistic source such that only the positive value greater than a given critical concentration can grow. We consider the temporal profiles of numerical results in the one-, two-, and three-dimensional spaces to examine the effect of extra mass source. Numerical solutions are obtained using a finite difference multigrid solver. Moreover, we perform numerical tests for tumor growth simulation, which is a typical application of generalized CH equations in biology. We apply the proposed cut-off logistic source term and have good results.
}, issn = {2079-7338}, doi = {https://doi.org/10.4208/nmtma.OA-2020-0051}, url = {http://global-sci.org/intro/article_detail/nmtma/18334.html} }We investigate the effect of cut-off logistic source on evolutionary dynamics of a generalized Cahn-Hilliard (CH) equation in this paper. It is a well-known fact that the maximum principle does not hold for the CH equation. Therefore, a generalized CH equation with logistic source may cause the negative concentration blow-up problem in finite time. To overcome this drawback, we propose the cut-off logistic source such that only the positive value greater than a given critical concentration can grow. We consider the temporal profiles of numerical results in the one-, two-, and three-dimensional spaces to examine the effect of extra mass source. Numerical solutions are obtained using a finite difference multigrid solver. Moreover, we perform numerical tests for tumor growth simulation, which is a typical application of generalized CH equations in biology. We apply the proposed cut-off logistic source term and have good results.