- Journal Home
- Volume 18 - 2025
- Volume 17 - 2024
- Volume 16 - 2023
- Volume 15 - 2022
- Volume 14 - 2021
- Volume 13 - 2020
- Volume 12 - 2019
- Volume 11 - 2018
- Volume 10 - 2017
- Volume 9 - 2016
- Volume 8 - 2015
- Volume 7 - 2014
- Volume 6 - 2013
- Volume 5 - 2012
- Volume 4 - 2011
- Volume 3 - 2010
- Volume 2 - 2009
- Volume 1 - 2008
Numer. Math. Theor. Meth. Appl., 13 (2020), pp. 928-945.
Published online: 2020-06
Cited by
- BibTex
- RIS
- TXT
In this study, Newton linearized finite element methods are presented for solving semi-linear parabolic equations in two- and three-dimensions. The proposed scheme is a one-step, linearized and second-order method in temporal direction, while the usual linearized second-order schemes require at least two starting values. By using a temporal-spatial error splitting argument, the fully discrete scheme is proved to be convergent without time-step restrictions dependent on the spatial mesh size. Numerical examples are given to demonstrate the efficiency of the methods and to confirm the theoretical results.
}, issn = {2079-7338}, doi = {https://doi.org/10.4208/nmtma.OA-2019-0139}, url = {http://global-sci.org/intro/article_detail/nmtma/16960.html} }In this study, Newton linearized finite element methods are presented for solving semi-linear parabolic equations in two- and three-dimensions. The proposed scheme is a one-step, linearized and second-order method in temporal direction, while the usual linearized second-order schemes require at least two starting values. By using a temporal-spatial error splitting argument, the fully discrete scheme is proved to be convergent without time-step restrictions dependent on the spatial mesh size. Numerical examples are given to demonstrate the efficiency of the methods and to confirm the theoretical results.