- Journal Home
- Volume 18 - 2025
- Volume 17 - 2024
- Volume 16 - 2023
- Volume 15 - 2022
- Volume 14 - 2021
- Volume 13 - 2020
- Volume 12 - 2019
- Volume 11 - 2018
- Volume 10 - 2017
- Volume 9 - 2016
- Volume 8 - 2015
- Volume 7 - 2014
- Volume 6 - 2013
- Volume 5 - 2012
- Volume 4 - 2011
- Volume 3 - 2010
- Volume 2 - 2009
- Volume 1 - 2008
Numer. Math. Theor. Meth. Appl., 12 (2019), pp. 867-883.
Published online: 2019-04
Cited by
- BibTex
- RIS
- TXT
Modulus-based matrix splitting iteration methods were recently proposed for solving implicit complementarity problems. In this paper, to solve a class of implicit complementarity problems, two-step modulus-based matrix splitting iteration methods are presented and analyzed. The convergence theorems are established when the system matrix is an $H$+-matrix. Numerical results show that the proposed methods are efficient and can accelerate the convergence performance with less iteration steps and CPU time.
}, issn = {2079-7338}, doi = {https://doi.org/10.4208/nmtma.OA-2018-0034}, url = {http://global-sci.org/intro/article_detail/nmtma/13134.html} }Modulus-based matrix splitting iteration methods were recently proposed for solving implicit complementarity problems. In this paper, to solve a class of implicit complementarity problems, two-step modulus-based matrix splitting iteration methods are presented and analyzed. The convergence theorems are established when the system matrix is an $H$+-matrix. Numerical results show that the proposed methods are efficient and can accelerate the convergence performance with less iteration steps and CPU time.