- Journal Home
- Volume 18 - 2025
- Volume 17 - 2024
- Volume 16 - 2023
- Volume 15 - 2022
- Volume 14 - 2021
- Volume 13 - 2020
- Volume 12 - 2019
- Volume 11 - 2018
- Volume 10 - 2017
- Volume 9 - 2016
- Volume 8 - 2015
- Volume 7 - 2014
- Volume 6 - 2013
- Volume 5 - 2012
- Volume 4 - 2011
- Volume 3 - 2010
- Volume 2 - 2009
- Volume 1 - 2008
Numer. Math. Theor. Meth. Appl., 8 (2015), pp. 199-219.
Published online: 2015-08
Cited by
- BibTex
- RIS
- TXT
In this paper, we propose a multigrid algorithm based on the full approximate scheme for solving the membrane constrained obstacle problems and the minimal surface obstacle problems in the formulations of HJB equations. A Newton-Gauss-Seidel (NGS) method is used as smoother. A Galerkin coarse grid operator is proposed for the membrane constrained obstacle problem. Comparing with standard FAS with the direct discretization coarse grid operator, the FAS with the proposed operator converges faster. A special prolongation operator is used to interpolate functions accurately from the coarse grid to the fine grid at the boundary between the active and inactive sets. We will demonstrate the fast convergence of the proposed multigrid method for solving two model obstacle problems and compare the results with other multigrid methods.
}, issn = {2079-7338}, doi = {https://doi.org/10.4208/nmtma.2015.w08si}, url = {http://global-sci.org/intro/article_detail/nmtma/12407.html} }In this paper, we propose a multigrid algorithm based on the full approximate scheme for solving the membrane constrained obstacle problems and the minimal surface obstacle problems in the formulations of HJB equations. A Newton-Gauss-Seidel (NGS) method is used as smoother. A Galerkin coarse grid operator is proposed for the membrane constrained obstacle problem. Comparing with standard FAS with the direct discretization coarse grid operator, the FAS with the proposed operator converges faster. A special prolongation operator is used to interpolate functions accurately from the coarse grid to the fine grid at the boundary between the active and inactive sets. We will demonstrate the fast convergence of the proposed multigrid method for solving two model obstacle problems and compare the results with other multigrid methods.