- Journal Home
- Volume 18 - 2025
- Volume 17 - 2024
- Volume 16 - 2023
- Volume 15 - 2022
- Volume 14 - 2021
- Volume 13 - 2020
- Volume 12 - 2019
- Volume 11 - 2018
- Volume 10 - 2017
- Volume 9 - 2016
- Volume 8 - 2015
- Volume 7 - 2014
- Volume 6 - 2013
- Volume 5 - 2012
- Volume 4 - 2011
- Volume 3 - 2010
- Volume 2 - 2009
- Volume 1 - 2008
Numer. Math. Theor. Meth. Appl., 10 (2017), pp. 243-254.
Published online: 2017-10
Cited by
- BibTex
- RIS
- TXT
In this paper, we propose to use the interior functions of an hierarchical basis for high order $BDM_p$ elements to enforce the divergence-free condition of a magnetic field $B$ approximated by the $H(div)$ $BDM_p$ basis. The resulting constrained finite element method can be used to solve magnetic induction equation in MHD equations. The proposed procedure is based on the fact that the scalar ($p-1$)-th order polynomial space on each element can be decomposed as an orthogonal sum of the subspace defined by the divergence of the interior functions of the $p$-th order $BDM_p$ basis and the constant function. Therefore, the interior functions can be used to remove element-wise all higher order terms except the constant in the divergence error of the finite element solution of the $B$-field. The constant terms from each element can be then easily corrected using a first order $H(div)$ basis globally. Numerical results for a 3-D magnetic induction equation show the effectiveness of the proposed method in enforcing divergence-free condition of the magnetic field.
}, issn = {2079-7338}, doi = {https://doi.org/10.4208/nmtma.2017.s03}, url = {http://global-sci.org/intro/article_detail/nmtma/12345.html} }In this paper, we propose to use the interior functions of an hierarchical basis for high order $BDM_p$ elements to enforce the divergence-free condition of a magnetic field $B$ approximated by the $H(div)$ $BDM_p$ basis. The resulting constrained finite element method can be used to solve magnetic induction equation in MHD equations. The proposed procedure is based on the fact that the scalar ($p-1$)-th order polynomial space on each element can be decomposed as an orthogonal sum of the subspace defined by the divergence of the interior functions of the $p$-th order $BDM_p$ basis and the constant function. Therefore, the interior functions can be used to remove element-wise all higher order terms except the constant in the divergence error of the finite element solution of the $B$-field. The constant terms from each element can be then easily corrected using a first order $H(div)$ basis globally. Numerical results for a 3-D magnetic induction equation show the effectiveness of the proposed method in enforcing divergence-free condition of the magnetic field.