- Journal Home
- Volume 18 - 2025
- Volume 17 - 2024
- Volume 16 - 2023
- Volume 15 - 2022
- Volume 14 - 2021
- Volume 13 - 2020
- Volume 12 - 2019
- Volume 11 - 2018
- Volume 10 - 2017
- Volume 9 - 2016
- Volume 8 - 2015
- Volume 7 - 2014
- Volume 6 - 2013
- Volume 5 - 2012
- Volume 4 - 2011
- Volume 3 - 2010
- Volume 2 - 2009
- Volume 1 - 2008
Numer. Math. Theor. Meth. Appl., 10 (2017), pp. 44-64.
Published online: 2017-10
Cited by
- BibTex
- RIS
- TXT
In this paper, a bilinear Streamline-Diffusion finite element method on Bakhvalov-Shishkin mesh for singularly perturbed convection-diffusion problem is analyzed. The method is shown to be convergent uniformly in the perturbation parameter $ϵ$ provided only that $ϵ ≤ N^{−1}$. An $\mathcal{O}(N^{−2}$(ln$N$)$^{1/2}$) convergent rate in a discrete streamline-diffusion norm is established under certain regularity assumptions. Finally, through numerical experiments, we verified the theoretical results.
}, issn = {2079-7338}, doi = {https://doi.org/10.4208/nmtma.2017.y13026}, url = {http://global-sci.org/intro/article_detail/nmtma/12335.html} }In this paper, a bilinear Streamline-Diffusion finite element method on Bakhvalov-Shishkin mesh for singularly perturbed convection-diffusion problem is analyzed. The method is shown to be convergent uniformly in the perturbation parameter $ϵ$ provided only that $ϵ ≤ N^{−1}$. An $\mathcal{O}(N^{−2}$(ln$N$)$^{1/2}$) convergent rate in a discrete streamline-diffusion norm is established under certain regularity assumptions. Finally, through numerical experiments, we verified the theoretical results.