- Journal Home
- Volume 18 - 2025
- Volume 17 - 2024
- Volume 16 - 2023
- Volume 15 - 2022
- Volume 14 - 2021
- Volume 13 - 2020
- Volume 12 - 2019
- Volume 11 - 2018
- Volume 10 - 2017
- Volume 9 - 2016
- Volume 8 - 2015
- Volume 7 - 2014
- Volume 6 - 2013
- Volume 5 - 2012
- Volume 4 - 2011
- Volume 3 - 2010
- Volume 2 - 2009
- Volume 1 - 2008
Cited by
- BibTex
- RIS
- TXT
We propose an efficient and robust algorithm to solve the steady Euler equations on unstructured grids. The new algorithm is a Newton-iteration method in which each iteration step is a linear multigrid method using block lower-upper symmetric Gauss-Seidel (LU-SGS) iteration as its smoother. To regularize the Jacobian matrix of Newton-iteration, we adopted a local residual dependent regularization as the replacement of the standard time-stepping relaxation technique based on the local CFL number. The proposed method can be extended to high order approximations and three spatial dimensions in a nature way. The solver was tested on a sequence of benchmark problems on both quasi-uniform and local adaptive meshes. The numerical results illustrated the efficiency and robustness of our algorithm.
}, issn = {2079-7338}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/nmtma/10112.html} }We propose an efficient and robust algorithm to solve the steady Euler equations on unstructured grids. The new algorithm is a Newton-iteration method in which each iteration step is a linear multigrid method using block lower-upper symmetric Gauss-Seidel (LU-SGS) iteration as its smoother. To regularize the Jacobian matrix of Newton-iteration, we adopted a local residual dependent regularization as the replacement of the standard time-stepping relaxation technique based on the local CFL number. The proposed method can be extended to high order approximations and three spatial dimensions in a nature way. The solver was tested on a sequence of benchmark problems on both quasi-uniform and local adaptive meshes. The numerical results illustrated the efficiency and robustness of our algorithm.