- Journal Home
- Volume 38 - 2025
- Volume 37 - 2024
- Volume 36 - 2023
- Volume 35 - 2022
- Volume 34 - 2021
- Volume 33 - 2020
- Volume 32 - 2019
- Volume 31 - 2018
- Volume 30 - 2017
- Volume 29 - 2016
- Volume 28 - 2015
- Volume 27 - 2014
- Volume 26 - 2013
- Volume 25 - 2012
- Volume 24 - 2011
- Volume 23 - 2010
- Volume 22 - 2009
- Volume 21 - 2008
- Volume 20 - 2007
- Volume 19 - 2006
- Volume 18 - 2005
- Volume 17 - 2004
- Volume 16 - 2003
- Volume 15 - 2002
- Volume 14 - 2001
- Volume 13 - 2000
- Volume 12 - 1999
- Volume 11 - 1998
- Volume 10 - 1997
- Volume 9 - 1996
- Volume 8 - 1995
- Volume 7 - 1994
- Volume 6 - 1993
- Volume 5 - 1992
- Volume 4 - 1991
- Volume 3 - 1990
- Volume 2 - 1989
- Volume 1 - 1988
Cited by
- BibTex
- RIS
- TXT
This paper is devoted to estimates on weighted $L^q$-norms of the nonstationary 3D Navier-Stokes flow in an exterior domain. By multiplying the Navier-Stokes equation with a well selected vector field, an integral equation is derived, from which, we establish the weighted estimate $∥|x|^αu(t)∥_q ≤ C(1+t^{\frac{α}{2} +ε} )t^{-\frac{3}{2}(1-\frac{1}{q})} ,$$t>0,$ where $ 0<α≤1$ and $\frac{3}{2}<q<∞,$ or $1<α<2$ and $\frac{3}{3−α }<q<∞,$ $0<ε<1$ is arbitrary, and $u_0∈L^3_σ(Ω),$ $|x|^αu_0 ∈L^1(Ω)$ with $∥u_0∥_3$ sufficiently small. With the aid of the representation of the flow, we also prove that if in addition $u_0∈D^{1−1/b,b} _a$ for some $\frac{6}{5} \le a<\frac{3}{2}$ and $1<b<2$ with $\frac{3}{a}+\frac{2}{b} =4,$ then the optimal estimate $∥|x|^αu(t)∥_q≤C(1+t^{\frac{\alpha}{2}}) t^{-\frac{3}{2}(1-\frac{1}{q})},$ $t>0$ holds, where $α>0$ and $1<q<∞.$ Compared with the literature, here no extra restriction is laid on the range of the exponents $α$ and $q.$
}, issn = {2079-732X}, doi = {https://doi.org/10.4208/jpde.v38.n3.1}, url = {http://global-sci.org/intro/article_detail/jpde/24400.html} }This paper is devoted to estimates on weighted $L^q$-norms of the nonstationary 3D Navier-Stokes flow in an exterior domain. By multiplying the Navier-Stokes equation with a well selected vector field, an integral equation is derived, from which, we establish the weighted estimate $∥|x|^αu(t)∥_q ≤ C(1+t^{\frac{α}{2} +ε} )t^{-\frac{3}{2}(1-\frac{1}{q})} ,$$t>0,$ where $ 0<α≤1$ and $\frac{3}{2}<q<∞,$ or $1<α<2$ and $\frac{3}{3−α }<q<∞,$ $0<ε<1$ is arbitrary, and $u_0∈L^3_σ(Ω),$ $|x|^αu_0 ∈L^1(Ω)$ with $∥u_0∥_3$ sufficiently small. With the aid of the representation of the flow, we also prove that if in addition $u_0∈D^{1−1/b,b} _a$ for some $\frac{6}{5} \le a<\frac{3}{2}$ and $1<b<2$ with $\frac{3}{a}+\frac{2}{b} =4,$ then the optimal estimate $∥|x|^αu(t)∥_q≤C(1+t^{\frac{\alpha}{2}}) t^{-\frac{3}{2}(1-\frac{1}{q})},$ $t>0$ holds, where $α>0$ and $1<q<∞.$ Compared with the literature, here no extra restriction is laid on the range of the exponents $α$ and $q.$