J. Nonl. Mod. Anal., 4 (2022), pp. 686-700.
Published online: 2023-08
[An open-access article; the PDF is free to any online user.]
Cited by
- BibTex
- RIS
- TXT
In this paper, we investigate the existence of triple positive solutions of boundary value problems for high-order fractional differential equation at resonance with singularities by using the fixed point index theory and the Leggett-Williams theorem. The spectral theory and some new height functions are also employed to establish the existence of triple positive solutions. The nonlinearity involved is arbitrary fractional derivative, and permits singularity.
}, issn = {2562-2862}, doi = {https://doi.org/10.12150/jnma.2022.686}, url = {http://global-sci.org/intro/article_detail/jnma/21906.html} }In this paper, we investigate the existence of triple positive solutions of boundary value problems for high-order fractional differential equation at resonance with singularities by using the fixed point index theory and the Leggett-Williams theorem. The spectral theory and some new height functions are also employed to establish the existence of triple positive solutions. The nonlinearity involved is arbitrary fractional derivative, and permits singularity.