Cited by
- BibTex
- RIS
- TXT
In this paper, we consider a self-adaptive extrapolated Gauss-Seidel method for solving the Hermitian positive definite linear systems. Based on optimization models, self-adaptive optimal factor is given. Moreover, we prove the convergence of the self-adaptive extrapolated Gauss-Seidel method without any constraints on optimal factor. Finally, the numerical examples show that the self-adaptive extrapolated Gauss-Seidel method is effective and practical in iteration number.
}, issn = {2617-8702}, doi = {https://doi.org/10.4208/jms.v48n1.15.02}, url = {http://global-sci.org/intro/article_detail/jms/9907.html} }In this paper, we consider a self-adaptive extrapolated Gauss-Seidel method for solving the Hermitian positive definite linear systems. Based on optimization models, self-adaptive optimal factor is given. Moreover, we prove the convergence of the self-adaptive extrapolated Gauss-Seidel method without any constraints on optimal factor. Finally, the numerical examples show that the self-adaptive extrapolated Gauss-Seidel method is effective and practical in iteration number.