Volume Gap Theorems for Ricci Nonnegative Metrics and Einstein Metrics
Cited by
Export citation
- BibTex
- RIS
- TXT
@Article{JMS-58-133,
author = {Chen , Xiuxiong and Dong , Conghan},
title = {Volume Gap Theorems for Ricci Nonnegative Metrics and Einstein Metrics},
journal = {Journal of Mathematical Study},
year = {2025},
volume = {58},
number = {2},
pages = {133--144},
abstract = {
In this note, we prove some gap theorems of asymptotic volume ratio for Ricci nonnegative metrics, and gap theorems of volume for Einstein metrics.
}, issn = {2617-8702}, doi = {https://doi.org/10.4208/jms.v58n2.25.01}, url = {http://global-sci.org/intro/article_detail/jms/24206.html} }
TY - JOUR
T1 - Volume Gap Theorems for Ricci Nonnegative Metrics and Einstein Metrics
AU - Chen , Xiuxiong
AU - Dong , Conghan
JO - Journal of Mathematical Study
VL - 2
SP - 133
EP - 144
PY - 2025
DA - 2025/06
SN - 58
DO - http://doi.org/10.4208/jms.v58n2.25.01
UR - https://global-sci.org/intro/article_detail/jms/24206.html
KW - Asymptotic volume ratio, Ricci curvature, Einstein metrics.
AB -
In this note, we prove some gap theorems of asymptotic volume ratio for Ricci nonnegative metrics, and gap theorems of volume for Einstein metrics.
Chen , Xiuxiong and Dong , Conghan. (2025). Volume Gap Theorems for Ricci Nonnegative Metrics and Einstein Metrics.
Journal of Mathematical Study. 58 (2).
133-144.
doi:10.4208/jms.v58n2.25.01
Copy to clipboard