Volume 58, Issue 2
Volume Gap Theorems for Ricci Nonnegative Metrics and Einstein Metrics

Xiuxiong Chen & Conghan Dong

J. Math. Study, 58 (2025), pp. 133-144.

Published online: 2025-06

Export citation
  • Abstract

In this note, we prove some gap theorems of asymptotic volume ratio for Ricci nonnegative metrics, and gap theorems of volume for Einstein metrics.

  • AMS Subject Headings

53C21

  • Copyright

COPYRIGHT: © Global Science Press

  • Email address
  • BibTex
  • RIS
  • TXT
@Article{JMS-58-133, author = {Chen , Xiuxiong and Dong , Conghan}, title = {Volume Gap Theorems for Ricci Nonnegative Metrics and Einstein Metrics}, journal = {Journal of Mathematical Study}, year = {2025}, volume = {58}, number = {2}, pages = {133--144}, abstract = {

In this note, we prove some gap theorems of asymptotic volume ratio for Ricci nonnegative metrics, and gap theorems of volume for Einstein metrics.

}, issn = {2617-8702}, doi = {https://doi.org/10.4208/jms.v58n2.25.01}, url = {http://global-sci.org/intro/article_detail/jms/24206.html} }
TY - JOUR T1 - Volume Gap Theorems for Ricci Nonnegative Metrics and Einstein Metrics AU - Chen , Xiuxiong AU - Dong , Conghan JO - Journal of Mathematical Study VL - 2 SP - 133 EP - 144 PY - 2025 DA - 2025/06 SN - 58 DO - http://doi.org/10.4208/jms.v58n2.25.01 UR - https://global-sci.org/intro/article_detail/jms/24206.html KW - Asymptotic volume ratio, Ricci curvature, Einstein metrics. AB -

In this note, we prove some gap theorems of asymptotic volume ratio for Ricci nonnegative metrics, and gap theorems of volume for Einstein metrics.

Chen , Xiuxiong and Dong , Conghan. (2025). Volume Gap Theorems for Ricci Nonnegative Metrics and Einstein Metrics. Journal of Mathematical Study. 58 (2). 133-144. doi:10.4208/jms.v58n2.25.01
Copy to clipboard
The citation has been copied to your clipboard