Volume 57, Issue 4
Normalized Solutions for a Kirchhoff Equation with Potential in $\mathbb{R}^3$

Yuan Xu & Yongyi Lan

J. Math. Study, 57 (2024), pp. 509-527.

Published online: 2024-12

Export citation
  • Abstract

In this paper, for given mass $c>0,$ we study the existence of normalized solutions to the following nonlinear Kirchhoff equation  $$\begin{cases} (a+b\int_{\mathbb{R}^3}[|\nabla u|^2+V(x)u^2]dx)[-\Delta u+V(x)u]=\lambda u+\mu|u|^{q-2}u+|u|^{p-2}u, \ \ \ {\rm in}\ \ \mathbb{R}^3, \\ \int_{\mathbb{R}^3}|u|^2dx=c^2, \end{cases}$$where $a>0, b>0, λ∈\mathbb{R},$ $5<q< p<6,$ $\mu>0$ and $V$ is a continuous non-positive function vanishing at infinity. Under some mild assumptions on $V,$ we prove the existence of a mountain pass normalized solution via the minimax principle.

  • AMS Subject Headings

35C15, 35Q51

  • Copyright

COPYRIGHT: © Global Science Press

  • Email address
  • BibTex
  • RIS
  • TXT
@Article{JMS-57-509, author = {Xu , Yuan and Lan , Yongyi}, title = {Normalized Solutions for a Kirchhoff Equation with Potential in $\mathbb{R}^3$}, journal = {Journal of Mathematical Study}, year = {2024}, volume = {57}, number = {4}, pages = {509--527}, abstract = {

In this paper, for given mass $c>0,$ we study the existence of normalized solutions to the following nonlinear Kirchhoff equation  $$\begin{cases} (a+b\int_{\mathbb{R}^3}[|\nabla u|^2+V(x)u^2]dx)[-\Delta u+V(x)u]=\lambda u+\mu|u|^{q-2}u+|u|^{p-2}u, \ \ \ {\rm in}\ \ \mathbb{R}^3, \\ \int_{\mathbb{R}^3}|u|^2dx=c^2, \end{cases}$$where $a>0, b>0, λ∈\mathbb{R},$ $5<q< p<6,$ $\mu>0$ and $V$ is a continuous non-positive function vanishing at infinity. Under some mild assumptions on $V,$ we prove the existence of a mountain pass normalized solution via the minimax principle.

}, issn = {2617-8702}, doi = {https://doi.org/10.4208/jms.v57n4.24.08}, url = {http://global-sci.org/intro/article_detail/jms/23715.html} }
TY - JOUR T1 - Normalized Solutions for a Kirchhoff Equation with Potential in $\mathbb{R}^3$ AU - Xu , Yuan AU - Lan , Yongyi JO - Journal of Mathematical Study VL - 4 SP - 509 EP - 527 PY - 2024 DA - 2024/12 SN - 57 DO - http://doi.org/10.4208/jms.v57n4.24.08 UR - https://global-sci.org/intro/article_detail/jms/23715.html KW - Kirchhoff equation, normalized solutions, minimax principle. AB -

In this paper, for given mass $c>0,$ we study the existence of normalized solutions to the following nonlinear Kirchhoff equation  $$\begin{cases} (a+b\int_{\mathbb{R}^3}[|\nabla u|^2+V(x)u^2]dx)[-\Delta u+V(x)u]=\lambda u+\mu|u|^{q-2}u+|u|^{p-2}u, \ \ \ {\rm in}\ \ \mathbb{R}^3, \\ \int_{\mathbb{R}^3}|u|^2dx=c^2, \end{cases}$$where $a>0, b>0, λ∈\mathbb{R},$ $5<q< p<6,$ $\mu>0$ and $V$ is a continuous non-positive function vanishing at infinity. Under some mild assumptions on $V,$ we prove the existence of a mountain pass normalized solution via the minimax principle.

Xu , Yuan and Lan , Yongyi. (2024). Normalized Solutions for a Kirchhoff Equation with Potential in $\mathbb{R}^3$. Journal of Mathematical Study. 57 (4). 509-527. doi:10.4208/jms.v57n4.24.08
Copy to clipboard
The citation has been copied to your clipboard