- Journal Home
- Volume 43 - 2025
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
J. Comp. Math., 43 (2025), pp. 1063-1091.
Published online: 2025-09
Cited by
- BibTex
- RIS
- TXT
This paper presents various acceleration techniques tailored for the traditional 3D topology optimization problem. Firstly, the adoption of the finite difference method leads to a sparser stiffness matrix, resulting in more efficient matrix-vector multiplication. Additionally, a fully matrix-free technique is proposed, which only assembles stiffness matrices at the coarsest grid level and does not require complex node numbering. Moreover, an innovative N-cycle multigrid (MG) algorithm is proposed to act as a preconditioner within conjugate gradient (CG) iterations. Finally, to further enhance the optimization process on high-resolution grids, a progressive strategy is implemented. The numerical results confirm that these acceleration techniques are not only efficient, but also capable of achieving lower compliance and reducing memory consumption. MATLAB codes complementing the article can be downloaded from Github.
}, issn = {1991-7139}, doi = {https://doi.org/10.4208/jcm.2508-m2025-0035}, url = {http://global-sci.org/intro/article_detail/jcm/24471.html} }This paper presents various acceleration techniques tailored for the traditional 3D topology optimization problem. Firstly, the adoption of the finite difference method leads to a sparser stiffness matrix, resulting in more efficient matrix-vector multiplication. Additionally, a fully matrix-free technique is proposed, which only assembles stiffness matrices at the coarsest grid level and does not require complex node numbering. Moreover, an innovative N-cycle multigrid (MG) algorithm is proposed to act as a preconditioner within conjugate gradient (CG) iterations. Finally, to further enhance the optimization process on high-resolution grids, a progressive strategy is implemented. The numerical results confirm that these acceleration techniques are not only efficient, but also capable of achieving lower compliance and reducing memory consumption. MATLAB codes complementing the article can be downloaded from Github.