- Journal Home
- Volume 43 - 2025
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
We study a class of stochastic semilinear damped wave equations driven by additive Wiener noise. Owing to the damping term, under appropriate conditions on the nonlinearity, the solution admits a unique invariant distribution. We apply semi-discrete and fully-discrete methods in order to approximate this invariant distribution, using a spectral Galerkin method and an exponential Euler integrator for spatial and temporal discretization respectively. We prove that the considered numerical schemes also admit unique invariant distributions, and we prove error estimates between the approximate and exact invariant distributions, with identification of the orders of convergence. To the best of our knowledge this is the first result in the literature concerning numerical approximation of invariant distributions for stochastic damped wave equations.
}, issn = {1991-7139}, doi = {https://doi.org/10.4208/jcm.2404-m2023-0144}, url = {http://global-sci.org/intro/article_detail/jcm/24267.html} }We study a class of stochastic semilinear damped wave equations driven by additive Wiener noise. Owing to the damping term, under appropriate conditions on the nonlinearity, the solution admits a unique invariant distribution. We apply semi-discrete and fully-discrete methods in order to approximate this invariant distribution, using a spectral Galerkin method and an exponential Euler integrator for spatial and temporal discretization respectively. We prove that the considered numerical schemes also admit unique invariant distributions, and we prove error estimates between the approximate and exact invariant distributions, with identification of the orders of convergence. To the best of our knowledge this is the first result in the literature concerning numerical approximation of invariant distributions for stochastic damped wave equations.