- Journal Home
- Volume 43 - 2025
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
A weak Galerkin mixed finite element method is studied for linear elasticity problems without the requirement of symmetry. The key of numerical methods in mixed formulation is the symmetric constraint of numerical stress. In this paper, we introduce the discrete symmetric weak divergence to ensure the symmetry of numerical stress. The corresponding stabilizer is presented to guarantee the weak continuity. This method does not need extra unknowns. The optimal error estimates in discrete $H^1$ and $L^2$ norms are established. The numerical examples in 2D and 3D are presented to demonstrate the efficiency and locking-free property.
}, issn = {1991-7139}, doi = {https://doi.org/10.4208/jcm.2404-m2023-0250}, url = {http://global-sci.org/intro/article_detail/jcm/24265.html} }A weak Galerkin mixed finite element method is studied for linear elasticity problems without the requirement of symmetry. The key of numerical methods in mixed formulation is the symmetric constraint of numerical stress. In this paper, we introduce the discrete symmetric weak divergence to ensure the symmetry of numerical stress. The corresponding stabilizer is presented to guarantee the weak continuity. This method does not need extra unknowns. The optimal error estimates in discrete $H^1$ and $L^2$ norms are established. The numerical examples in 2D and 3D are presented to demonstrate the efficiency and locking-free property.