- Journal Home
- Volume 43 - 2025
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
In this paper, a radial basis function method combined with the stochastic Galerkin method is considered to approximate elliptic optimal control problem with random coefficients. This radial basis function method is a meshfree approach for solving high dimensional random problem. Firstly, the optimality system of the model problem is derived and represented as a set of deterministic equations in high-dimensional parameter space by finite-dimensional noise assumption. Secondly, the approximation scheme is established by using finite element method for the physical space, and compactly supported radial basis functions for the parameter space. The radial basis functions lead to the sparsity of the stiff matrix with lower condition number. A residual type a posteriori error estimates with lower and upper bounds are derived for the state, co-state and control variables. An adaptive algorithm is developed to deal with the physical and parameter space, respectively. Numerical examples are presented to illustrate the theoretical results.
}, issn = {1991-7139}, doi = {https://doi.org/10.4208/jcm.2404-m2021-0289}, url = {http://global-sci.org/intro/article_detail/jcm/24262.html} }In this paper, a radial basis function method combined with the stochastic Galerkin method is considered to approximate elliptic optimal control problem with random coefficients. This radial basis function method is a meshfree approach for solving high dimensional random problem. Firstly, the optimality system of the model problem is derived and represented as a set of deterministic equations in high-dimensional parameter space by finite-dimensional noise assumption. Secondly, the approximation scheme is established by using finite element method for the physical space, and compactly supported radial basis functions for the parameter space. The radial basis functions lead to the sparsity of the stiff matrix with lower condition number. A residual type a posteriori error estimates with lower and upper bounds are derived for the state, co-state and control variables. An adaptive algorithm is developed to deal with the physical and parameter space, respectively. Numerical examples are presented to illustrate the theoretical results.