- Journal Home
- Volume 22 - 2025
- Volume 21 - 2024
- Volume 20 - 2023
- Volume 19 - 2022
- Volume 18 - 2021
- Volume 17 - 2020
- Volume 16 - 2019
- Volume 15 - 2018
- Volume 14 - 2017
- Volume 13 - 2016
- Volume 12 - 2015
- Volume 11 - 2014
- Volume 10 - 2013
- Volume 9 - 2012
- Volume 8 - 2011
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2008
- Volume 4 - 2007
- Volume 3 - 2006
- Volume 2 - 2005
- Volume 1 - 2004
Int. J. Numer. Anal. Mod., 22 (2025), pp. 897-924.
Published online: 2025-08
Cited by
- BibTex
- RIS
- TXT
The aim of this paper is to study the time stepping scheme for approximately solving the subdiffusion equation with a weakly singular source term. In this case, many popular time stepping schemes, including the correction of high-order BDF methods, may lose their high-order accuracy. To fill in this gap, in this paper, we develop a novel time stepping scheme, where the source term is regularized by using an $m$-fold integral-derivative and the equation is discretized by using a modified BDF2 convolution quadrature. We prove that the proposed time stepping scheme is second-order, even if the source term is nonsmooth in time and incompatible with the initial data. Numerical results are presented to support the theoretical results. The proposed approach is applicable for stochastic subdiffusion equation.
}, issn = {2617-8710}, doi = {https://doi.org/10.4208/ijnam2025-1039}, url = {http://global-sci.org/intro/article_detail/ijnam/24297.html} }The aim of this paper is to study the time stepping scheme for approximately solving the subdiffusion equation with a weakly singular source term. In this case, many popular time stepping schemes, including the correction of high-order BDF methods, may lose their high-order accuracy. To fill in this gap, in this paper, we develop a novel time stepping scheme, where the source term is regularized by using an $m$-fold integral-derivative and the equation is discretized by using a modified BDF2 convolution quadrature. We prove that the proposed time stepping scheme is second-order, even if the source term is nonsmooth in time and incompatible with the initial data. Numerical results are presented to support the theoretical results. The proposed approach is applicable for stochastic subdiffusion equation.