TY - JOUR T1 - Estimates for Parabolic Schrödinger Operators with Certain Nonnegative Potentials AU - Wang , Yanhui JO - Analysis in Theory and Applications VL - 3 SP - 197 EP - 207 PY - 2025 DA - 2025/09 SN - 41 DO - http://doi.org/10.4208/ata.OA-2023-0009 UR - https://global-sci.org/intro/article_detail/ata/24472.html KW - $L^p$ estimate, parabolic Schrödinger operator, reverse Hölder class. AB -
In this paper, the parabolic Schrödinger operator $\mathcal{P}={\partial}_t-\triangle+V(x)$ on $\mathbb{R}^{n+1}$ is considered, where $n\ge3,$ nonnegative potential $V$ belongs to the reverse Hölder class $RH_q$ with $q \ge n /2$. The $L^p$ boundedness of operators $V^{\alpha}\mathcal{P}^{-\beta},$ $V^{\alpha}{\nabla}\mathcal{P}^{-\beta}$ and their adjoint operators are established.