TY - JOUR T1 - $\mathbf{H}$(${\rm curl}^2$) Conforming Element for Maxwell’s Transmission Eigenvalue Problem Using Fixed-Point Approach AU - Han , Jiayu AU - Zhang , Zhimin JO - CSIAM Transactions on Applied Mathematics VL - 3 SP - 468 EP - 488 PY - 2025 DA - 2025/09 SN - 6 DO - http://doi.org/10.4208/csiam-am.SO-2021-0046 UR - https://global-sci.org/intro/article_detail/csiam-am/24372.html KW - Maxwell’s transmission eigenvalues, curl-curl conforming element, error estimates. AB -

Using newly developed $\mathbf{H}$(${\rm curl}^2$) conforming elements, we solve the Maxwell’s transmission eigenvalue problem. Both real and complex eigenvalues are considered. Based on the fixed-point weak formulation with reasonable assumptions, the optimal error estimates for numerical eigenvalues and eigenfunctions (in the $\mathbf{H}$(${\rm curl}^2$)-norm and $\mathbf{H}{\rm (curl)}$-semi-norm) are established. Numerical experiments are performed to verify the theoretical assumptions and confirm our theoretical analysis.