TY - JOUR T1 - Strong Instability of Standing Waves for a Type of Hartree Equations AU - Wang , Chenglin AU - Zhang , Jian JO - Journal of Partial Differential Equations VL - 2 SP - 142 EP - 154 PY - 2025 DA - 2025/06 SN - 38 DO - http://doi.org/10.4208/jpde.v38.n2.2 UR - https://global-sci.org/intro/article_detail/jpde/24213.html KW - Hartree equation, standing wave, variational arguments, strong instability, blowup. AB -

In this paper, we study the following three-dimensional Schrödinger equation with combined Hartree-type and power-type nonlinearities $$i\partial_t\psi+\Delta\psi+(|x|^{-2}*|\psi|^2)\psi+|\psi|^{p-1}\psi=0$$with $1 < p < 5.$ Using standard variational arguments, the existence of ground state solutions is obtained. And then we prove that when $p≥3,$ the standing wave solution $e^{ iωt}u_ω(x)$ is strongly unstable for the frequency $ω>0.$