TY - JOUR T1 - Local Ultraconvergence of Quadratic Rectangular Element AU - He , Wenming AU - Deng , Mingxiang AU - Feng , Yongping AU - Guan , Xiaofei JO - East Asian Journal on Applied Mathematics VL - 3 SP - 650 EP - 668 PY - 2025 DA - 2025/06 SN - 15 DO - http://doi.org/10.4208/eajam.2024-146.021224 UR - https://global-sci.org/intro/article_detail/eajam/24159.html KW - Ultraconvergence, quadratic rectangular element, integral identity, local symmetric, interpolation postprocessing. AB -
A state of the art technology is employed to investigate the local ultraconvergence properties of a quadratic rectangular element for the Poisson equation. The proposed method combine advantages of a novel interpolation postprocessing operator $\overline{P}^6_{6h,m} R^∗_h ,$ the Richardson extrapolation technique, and properties of a discrete Green’s function. The local ultraconvergence of the post-processed gradient of the finite element solution is derived with the order $\mathcal{O}(h^6 |{\rm ln}h|^2).$ A numerical example shows a good agreement with the theoretical findings.