CSIAM Trans. Life Sci., 1 (2025), pp. 153-178.
Published online: 2025-03
Cited by
- BibTex
- RIS
- TXT
In this paper, we establish the existence and nonlinear stability of a hyperbolic system of conservation laws derived from a repulsive singular chemotaxis model. By the phase plane analysis alongside Poincaré-Bendixson theorem, we first prove that this hyperbolic system admits three different types of traveling wave profiles, which are explicitly illustrated with numerical simulations. Then using a unified weighted energy estimates and technique of taking anti-derivatives, we prove that all types of traveling wave profiles, including non-monotone pulsating wave profiles, are nonlinearly and asymptotically stable if the initial data are small perturbations with zero mass from the spatially shifted traveling wave profiles.
}, issn = {3006-2721}, doi = {https://doi.org/10.4208/csiam-ls.SO-2024-0005a}, url = {http://global-sci.org/intro/article_detail/csiam-ls/23914.html} }In this paper, we establish the existence and nonlinear stability of a hyperbolic system of conservation laws derived from a repulsive singular chemotaxis model. By the phase plane analysis alongside Poincaré-Bendixson theorem, we first prove that this hyperbolic system admits three different types of traveling wave profiles, which are explicitly illustrated with numerical simulations. Then using a unified weighted energy estimates and technique of taking anti-derivatives, we prove that all types of traveling wave profiles, including non-monotone pulsating wave profiles, are nonlinearly and asymptotically stable if the initial data are small perturbations with zero mass from the spatially shifted traveling wave profiles.