- Journal Home
- Volume 41 - 2025
- Volume 40 - 2024
- Volume 39 - 2023
- Volume 38 - 2022
- Volume 37 - 2021
- Volume 36 - 2020
- Volume 35 - 2019
- Volume 34 - 2018
- Volume 33 - 2017
- Volume 32 - 2016
- Volume 31 - 2015
- Volume 30 - 2014
- Volume 29 - 2013
- Volume 28 - 2012
- Volume 27 - 2011
- Volume 26 - 2010
- Volume 25 - 2009
Cited by
- BibTex
- RIS
- TXT
Kernel learning forward backward stochastic differential equations (FBSDE) filter is an iterative and adaptive meshfree approach to solve the nonlinear filtering problem. It builds from forward backward SDE for Fokker-Planker equation, which defines evolving density for the state variable, and employs kernel density estimation (KDE) to approximate density. This algorithm has shown more superior performance than mainstream particle filter method, in both convergence speed and efficiency of solving high dimension problems. However, this method has only been shown to converge empirically. In this paper, we present a rigorous analysis to demonstrate its local and global convergence, and provide theoretical support for its empirical results.
}, issn = {2707-8523}, doi = {https://doi.org/10.4208/cmr.2024-0017}, url = {http://global-sci.org/intro/article_detail/cmr/23414.html} }Kernel learning forward backward stochastic differential equations (FBSDE) filter is an iterative and adaptive meshfree approach to solve the nonlinear filtering problem. It builds from forward backward SDE for Fokker-Planker equation, which defines evolving density for the state variable, and employs kernel density estimation (KDE) to approximate density. This algorithm has shown more superior performance than mainstream particle filter method, in both convergence speed and efficiency of solving high dimension problems. However, this method has only been shown to converge empirically. In this paper, we present a rigorous analysis to demonstrate its local and global convergence, and provide theoretical support for its empirical results.