- Journal Home
- Volume 41 - 2025
- Volume 40 - 2024
- Volume 39 - 2023
- Volume 38 - 2022
- Volume 37 - 2021
- Volume 36 - 2020
- Volume 35 - 2019
- Volume 34 - 2018
- Volume 33 - 2017
- Volume 32 - 2016
- Volume 31 - 2015
- Volume 30 - 2014
- Volume 29 - 2013
- Volume 28 - 2012
- Volume 27 - 2011
- Volume 26 - 2010
- Volume 25 - 2009
Cited by
- BibTex
- RIS
- TXT
In this paper, we consider using Schur complements to design preconditioners for twofold and block tridiagonal saddle point problems. One type of the preconditioners are based on the nested (or recursive) Schur complement, the other is based on an additive type Schur complement after permuting the original saddle point systems. We analyze different preconditioners incorporating the exact Schur complements. We show that some of them will lead to positively stable preconditioned systems if proper signs are selected in front of the Schur complements. These positive-stable preconditioners outperform other preconditioners if the Schur complements are further approximated inexactly. Numerical experiments for a 3-field formulation of the Biot model are provided to verify our predictions.
}, issn = {2707-8523}, doi = {https://doi.org/10.4208/cmr.2023-0051}, url = {http://global-sci.org/intro/article_detail/cmr/23088.html} }In this paper, we consider using Schur complements to design preconditioners for twofold and block tridiagonal saddle point problems. One type of the preconditioners are based on the nested (or recursive) Schur complement, the other is based on an additive type Schur complement after permuting the original saddle point systems. We analyze different preconditioners incorporating the exact Schur complements. We show that some of them will lead to positively stable preconditioned systems if proper signs are selected in front of the Schur complements. These positive-stable preconditioners outperform other preconditioners if the Schur complements are further approximated inexactly. Numerical experiments for a 3-field formulation of the Biot model are provided to verify our predictions.