- Journal Home
- Volume 41 - 2025
- Volume 40 - 2024
- Volume 39 - 2023
- Volume 38 - 2022
- Volume 37 - 2021
- Volume 36 - 2020
- Volume 35 - 2019
- Volume 34 - 2018
- Volume 33 - 2017
- Volume 32 - 2016
- Volume 31 - 2015
- Volume 30 - 2014
- Volume 29 - 2013
- Volume 28 - 2012
- Volume 27 - 2011
- Volume 26 - 2010
- Volume 25 - 2009
Cited by
- BibTex
- RIS
- TXT
In this paper, first we introduce the notion of an omni-representation of a Leibniz algebra $g$ on a vector space $V$ as a Leibniz algebra homomorphism from $g$ to the omni-Lie algebra $gl(V)⊕V.$ Then we introduce the omni-cohomology theory associated to omni-representations and establish the relation between omni-cohomology groups and Loday-Pirashvili cohomology groups.
}, issn = {2707-8523}, doi = {https://doi.org/10.4208/cmr.2023-0019}, url = {http://global-sci.org/intro/article_detail/cmr/22280.html} }In this paper, first we introduce the notion of an omni-representation of a Leibniz algebra $g$ on a vector space $V$ as a Leibniz algebra homomorphism from $g$ to the omni-Lie algebra $gl(V)⊕V.$ Then we introduce the omni-cohomology theory associated to omni-representations and establish the relation between omni-cohomology groups and Loday-Pirashvili cohomology groups.