- Journal Home
- Volume 41 - 2025
- Volume 40 - 2024
- Volume 39 - 2023
- Volume 38 - 2022
- Volume 37 - 2021
- Volume 36 - 2020
- Volume 35 - 2019
- Volume 34 - 2018
- Volume 33 - 2017
- Volume 32 - 2016
- Volume 31 - 2015
- Volume 30 - 2014
- Volume 29 - 2013
- Volume 28 - 2012
- Volume 27 - 2011
- Volume 26 - 2010
- Volume 25 - 2009
Cited by
- BibTex
- RIS
- TXT
Considering the acoustic source scattering problems, when the source is non-radiating/invisible, we investigate the geometrical characterization for the underlying sources at polyhedral and conical corner. It is revealed that the non-radiating source with Hölder continuous regularity must vanish at the corner. Using this kind of geometrical characterization of non-radiating sources, we establish local and global unique determination for a source with the polyhedral or corona shape support by a single far field measurement. Uniqueness by a single far field measurement constitutes of a long standing problem in inverse scattering problems.
}, issn = {2707-8523}, doi = {https://doi.org/10.4208/cmr.2023-0014}, url = {http://global-sci.org/intro/article_detail/cmr/22099.html} }Considering the acoustic source scattering problems, when the source is non-radiating/invisible, we investigate the geometrical characterization for the underlying sources at polyhedral and conical corner. It is revealed that the non-radiating source with Hölder continuous regularity must vanish at the corner. Using this kind of geometrical characterization of non-radiating sources, we establish local and global unique determination for a source with the polyhedral or corona shape support by a single far field measurement. Uniqueness by a single far field measurement constitutes of a long standing problem in inverse scattering problems.