- Journal Home
- Volume 41 - 2025
- Volume 40 - 2024
- Volume 39 - 2023
- Volume 38 - 2022
- Volume 37 - 2021
- Volume 36 - 2020
- Volume 35 - 2019
- Volume 34 - 2018
- Volume 33 - 2017
- Volume 32 - 2016
- Volume 31 - 2015
- Volume 30 - 2014
- Volume 29 - 2013
- Volume 28 - 2012
- Volume 27 - 2011
- Volume 26 - 2010
- Volume 25 - 2009
Cited by
- BibTex
- RIS
- TXT
A closed subspace $M$ of the Hardy space $H^2(\mathbb{D}^2)$ over the bidisk is called submodule if it is invariant under multiplication by coordinate functions $z$ and $w.$ Whether every finitely generated submodule is Hilbert-Schmidt is an unsolved problem. This paper proves that every finitely generated submodule $M$ containing $θ(z)−\varphi(w)$ is Hilbert-Schmidt, where $θ(z),$ $\varphi(w)$ are two finite Blaschke products.
}, issn = {2707-8523}, doi = {https://doi.org/10.4208/cmr.2022-0034}, url = {http://global-sci.org/intro/article_detail/cmr/21606.html} }A closed subspace $M$ of the Hardy space $H^2(\mathbb{D}^2)$ over the bidisk is called submodule if it is invariant under multiplication by coordinate functions $z$ and $w.$ Whether every finitely generated submodule is Hilbert-Schmidt is an unsolved problem. This paper proves that every finitely generated submodule $M$ containing $θ(z)−\varphi(w)$ is Hilbert-Schmidt, where $θ(z),$ $\varphi(w)$ are two finite Blaschke products.