- Journal Home
- Volume 41 - 2025
- Volume 40 - 2024
- Volume 39 - 2023
- Volume 38 - 2022
- Volume 37 - 2021
- Volume 36 - 2020
- Volume 35 - 2019
- Volume 34 - 2018
- Volume 33 - 2017
- Volume 32 - 2016
- Volume 31 - 2015
- Volume 30 - 2014
- Volume 29 - 2013
- Volume 28 - 2012
- Volume 27 - 2011
- Volume 26 - 2010
- Volume 25 - 2009
Cited by
- BibTex
- RIS
- TXT
We consider a class of quasilinear elliptic boundary problems, including the following Modified Nonlinear Schrödinger Equation as a special case: $$\begin{cases} ∆u+ \frac{1}{2} u∆(u^2)−V(x)u+|u|^{q−2}u=0 \ \ \ in \ Ω, \\u=0 \ \ \ \ \ \ \ ~ ~ ~ on \ ∂Ω, \end{cases}$$ where $Ω$ is the entire space $\mathbb{R}^N$ or $Ω ⊂ \mathbb{R}^N$ is a bounded domain with smooth boundary, $q∈(2,22^∗]$ with $2^∗=2N/(N−2)$ being the critical Sobolev exponent and $22^∗= 4N/(N−2).$ We review the general methods developed in the last twenty years or so for the studies of existence, multiplicity, nodal property of the solutions within this range of nonlinearity up to the new critical exponent $4N/(N−2),$ which is a unique feature for this class of problems. We also discuss some related and more general problems.
}, issn = {2707-8523}, doi = {https://doi.org/10.4208/cmr.2022-0038}, url = {http://global-sci.org/intro/article_detail/cmr/21545.html} }We consider a class of quasilinear elliptic boundary problems, including the following Modified Nonlinear Schrödinger Equation as a special case: $$\begin{cases} ∆u+ \frac{1}{2} u∆(u^2)−V(x)u+|u|^{q−2}u=0 \ \ \ in \ Ω, \\u=0 \ \ \ \ \ \ \ ~ ~ ~ on \ ∂Ω, \end{cases}$$ where $Ω$ is the entire space $\mathbb{R}^N$ or $Ω ⊂ \mathbb{R}^N$ is a bounded domain with smooth boundary, $q∈(2,22^∗]$ with $2^∗=2N/(N−2)$ being the critical Sobolev exponent and $22^∗= 4N/(N−2).$ We review the general methods developed in the last twenty years or so for the studies of existence, multiplicity, nodal property of the solutions within this range of nonlinearity up to the new critical exponent $4N/(N−2),$ which is a unique feature for this class of problems. We also discuss some related and more general problems.