- Journal Home
- Volume 41 - 2025
- Volume 40 - 2024
- Volume 39 - 2023
- Volume 38 - 2022
- Volume 37 - 2021
- Volume 36 - 2020
- Volume 35 - 2019
- Volume 34 - 2018
- Volume 33 - 2017
- Volume 32 - 2016
- Volume 31 - 2015
- Volume 30 - 2014
- Volume 29 - 2013
- Volume 28 - 2012
- Volume 27 - 2011
- Volume 26 - 2010
- Volume 25 - 2009
Cited by
- BibTex
- RIS
- TXT
We study 2D and 3D Prandtl equations of degenerate hyperbolic type, and establish without any structural assumption the Gevrey well-posedness with Gevrey index ≤ 2. Compared with the classical parabolic Prandtl equations, the loss of the derivatives, caused by the hyperbolic feature coupled with the degeneracy, cannot be overcame by virtue of the classical cancellation mechanism that developed for the parabolic counterpart. Inspired by the abstract Cauchy-Kowalewski theorem and by virtue of the hyperbolic feature, we give in this text a straightforward proof, basing on an elementary $L^2$ energy estimate. In particular our argument does not involve the cancellation mechanism used efficiently for the classical Prandtl equations.
}, issn = {2707-8523}, doi = {https://doi.org/10.4208/cmr.2021-0104}, url = {http://global-sci.org/intro/article_detail/cmr/21074.html} }We study 2D and 3D Prandtl equations of degenerate hyperbolic type, and establish without any structural assumption the Gevrey well-posedness with Gevrey index ≤ 2. Compared with the classical parabolic Prandtl equations, the loss of the derivatives, caused by the hyperbolic feature coupled with the degeneracy, cannot be overcame by virtue of the classical cancellation mechanism that developed for the parabolic counterpart. Inspired by the abstract Cauchy-Kowalewski theorem and by virtue of the hyperbolic feature, we give in this text a straightforward proof, basing on an elementary $L^2$ energy estimate. In particular our argument does not involve the cancellation mechanism used efficiently for the classical Prandtl equations.